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Instabilities of higher-order parametric solitons: Filamentation versus coalescence
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Department of Physics and Applied Physics, John Anderson Building, University of Strathclyde, 107 Rottenrow,
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We investigate stability and dynamics of higher-order solitary waves in quadratic media, which have a
central peak and one or more surrounding rings. We show the existence of two qualitatively different behav-
iors. For positive phase mismatch the rings break up into filaments that move radially to the initial ring. For
sufficient negative mismatches rings are found to coalesce with the central peak, forming a single oscillating
filament.@S1063-651X~98!50608-3#

PACS number~s!: 42.65.Tg, 03.40.Kf, 42.65.Ky
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Stability of optical solitary waves~solitons! is one of the
most important questions of theoretical nonlinear optics
cause of its direct connection with the possibility of expe
mental observation of solitons. Stability of the solitons
fully integrable systems naturally follows from integrabilit
Solitons of the one-dimensional~1D! nonlinear Schro¨dinger
equation~NLS!, describing propagation of short pulses in
fiber with cubic nonlinearity, are a well known example@1#.
A wide range of the nonintegrable Hamiltonian models a
have solitary solutions. For instance, equations describ
parametric interaction in quadratic nonlinear media ha
solitary solutions, which were shown in Ref.@2# and were
recently explored in detail from both theoretical and expe
mental sides because of their many interesting features~see,
e.g.,@3,4#!. In nonintegrable systems the stability of groun
state solitary solutions is often governed by the derivative
some integral invariant with respect to an associated
parameter of the solution@4–6#. For example, it has bee
rigorously proven that for ground-state bright solitary so
tions, the generalized NLS equation positivity of the deriv
tive of total energy with respect to the nonlinear wave nu
ber shift is a necessary and sufficient condition for stabi
@5#. Numerical and analytic studies indicate that this a
holds for ground states in quadratic media@4#.

The existence of higher-order solitary waves with brig
and dark central spots surrounded by one or more rings
demonstrated for two-dimensional~2D! NLS equation with
pure Kerr@7# and saturable@5,8–10# nonlinearities, and also
in quadratic nonlinear media@10–12#. No universal stability
criterion is known for higher-order bound states and th
stability has to be studied individually in every case. It h
been shown that saturable nonlinearity higher-order bo
states with bright and dark central spots are stable with
spect to purely radial perturbations, obeying the criteria
ground states, but unstable with respect to azimuthally
pendent perturbations, showing a breakup of their rings
filaments @8–10#. Properties of solutions with dark centr
spots are strongly affected by their nonzero angular mom
tum, and these properties are very similar for both satura
and quadratic nonlinearities@10#.
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The dynamics induced by the instability of higher-ord
states is a fascinating phenomenon on its own and it
natural starting point for understanding pattern forming p
nomena in the evolution of higher-order Gaussian beam
nonlinear media@13#. The primary reason for this Rapi
Communication is to address the problem of stability a
dynamics of higher-order solutions with zero angular m
mentum in quadratic media. In particular we show that th
solutions reveal a scenario of evolution that is absent
corresponding solutions in Kerr-like media. Namely, f
some parameter values, symmetry-breaking instability le
ing to filamentation along rings replaces it with symmetr
preserving instability, resulting in the coalescence of rin
with a central peak.

We consider the interaction of first and second harmo
optical fields propagating in a dielectric medium with qu
dratic nonlinearity, under the conditions of type I pha
matching and with negligible walk-off effects. The corr

sponding Hamiltonian @2# is H5**dx dy@ 1
2 u¹W 'E1u2

1 1
4 u¹W 'E2u21buE2u22 1

2 (E1
2E2* 1c.c.)#, where ¹W '5 iW]x

1 jW]y andb is the normalized phase mismatch. All variabl
and parameters are dimensionless, and these scaled uni
used throughout the text and in the figures. The evolution
the normalized field envelopes of the fundamental (E1) and
second (E2) harmonics obeys the system of equations

i ]zEm5
dH

dEm*
, m51,2. ~1!

We look for nondiffracting solutions of Eqs.~1! in the form
Em(z,x,y)5Am(r )eimkz, where r 5Ax21y2, Am are real
functions, andk is the nonlinear wave vector shift. The ex
istence condition of localized solutions with exponentia
decaying tails isk.max~0,2b/2!. For any value ofk in this
range we were able to numerically build higher-order ma
ring solitary solutions with a bright central spot. Examples
spatial profiles of one- and two-ring solutions are presen
in Fig. 1~a!. For any finite number of rings, the fundament
field has radial zeros but the second harmonic field alw
remains positive, though they have minima that are close
the zeros of the fundamental. In the limitb@1, Eqs.~1! can
be approximately reduced to an NLS equation for the fun
mental field. Accordingly for increasingb the second har-
R1252 © 1998 The American Physical Society
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monic field tends to carry less and less of the energy.
situation is opposite for negativeb, whenk values are close
to the boundary of soliton existence. Dependences vsk of
the energy invariantQ5**dx dy(uE1u212uE2u2) are pre-
sented in Fig. 1~b!.

To study stability we consider 2D perturbations of the
solutions in the general formEm(r ,u,z)5eimkz@Am(r )
1em

1(r )elz1 iJu1em
2* (r )el* z2 iJu#. Hereu is the polar angle

andJ is the azimuthal index of the perturbation.J must be an
integer for azimuthal periodicity. Linearizing Eqs.~1! and
putting em

65r uJu f Jm
6 (r ) give the nonself-adjoint eigenvalu

problem

ilJF f J1
1

f J1
2

f J2
1

f J2
2

G5F L̂J1 A2 A1 0

2A2 2L̂J1 0 2A1

A1 0 L̂J2 0

0 2A1 0 2L̂J2

GF f J1
1

f J1
2

f J2
1

f J2
2

G , ~2!

where L̂J15 1
2 R̂J2k, L̂J25 1

4 R̂J22k2b, and R̂J5d2/dr2

1(2uJu11)/r (d/dr). We seek unstable eigenmodes in t
class of functions obeyingd fJm

6 /dr50 atr 50 and exponen-
tially decaying atr→`. Corresponding eigenvalues belon
ing to the discrete spectrum can lie anywhere in the comp
plane outside the rays (iVc ,i`) and (2 iVc ,2 i`), which
belong to the stable unbounded continuum, hereVc
5min(k,2k1b). Unstable modes have eigenvalues w
RelJ.0. They must always have a counterpart with RelJ
,0 because of the Hamiltonian nature of our problem.
finitesimal phase and translational transformations of the
tionary solutions generate two eigenfunctions:f̃ 0m

6 56mAm

for J50 and f̃ 1m
6 5(1/r )(dAm /dr) for J51, which are neu-

trally stable (l0,150).
We will mainly deal with solutions that have only on

ring outside the central peak. These show the main feat
of the dynamics of solutions with an arbitrary number
rings. First we consider symmetry-preserving perturbatio
J50. Using asymptotic techniques developed for t
ground-state solution@4#, it can be shown that the neutrall
stable mode branches at the point]kQ50, giving instability
for ]kQ,0 @see Fig. 1~b!#. Thus we can conclude that th
standard stability criterion for ground states@4,5# is also a
necessarycondition for the stability of higher-order boun
states. This instability is related to the existence for]kQ

FIG. 1. ~a! Radial profiles of one- and two-ring solitary wave
Full ~dashed! lines are forA1 (A2). ~b! Total energy vsk for one-
ring ~full lines! and two-ring ~dashed lines! solitary waves. The
negative values ofb are chosen so as to give]kQ50 at k53.
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.0 of a pair of eigenmodes with purely imaginary eigenv
ues~with opposite signs! lying in the gap (2 iVc ,iVc). At
the point]kQ50 these eigenmodes coincide with the neut
mode and for more negativeb appear again but with purely
real eigenvalues of opposite sign, signifying instability. F
the ground state this is the only instability scenario and th
discrete eigenmodes disappear into the continuum for la
b.0 @14#.

In the present system, we have undertaken a nume
investigation of the eigenvalue problem~2!. The caseJ50
reveals two pairs of discrete eigenmodes. The interplay
tween them leads to a bifurcation scenario, which we stu
for different values ofb for fixed k53. Changingk at fixed
b has no qualitative effect due to the scaling properties
Eq. ~1!. However, introducing this scaling modifies the st
bility criterion ]kQ.0 @4#, which we prefer to avoid.

Real and imaginary parts of key eigenvalues from
discrete spectrum are plotted vsb in Fig. 2. In the limit of
large b we found one internal eigenmode~line 1 in Fig. 2!
but, atb.4.75, another internal eigenmode~line 2! emerges
from the continuum. Upon emergence, mode 2 has Iml0
5k53, but asb is decreased the eigenvalues of the tw
modes come together, as Fig. 2 shows. They fuse
b.20.82 to form two pairs of eigenfunctions with comple
conjugate eigenvalues, giving the onset of an instabi
~lines 3,4!. At b.22.06 a reverse bifurcation takes plac
~lines 5,6!. One eigenmode@Fig. 3~a!# then has a purely
imaginary eigenvalue~line 6! until it loses its stability at
b.25.61~line 7!, where]kQ50. This is the standard insta
bility scenario described above. The other eigenmode un
goes a similar bifurcation, but atb.22.17~lines 5,8!, which
is well before the point]kQ50. At this bifurcation the
eigenfunction profiles@Fig. 3~b!# are quite different from

FIG. 2. Real~full lines! and imaginary~dotted lines! parts of the
eigenvalues ofJ50 eigenmodes vsb; k53.

FIG. 3. ~a! Internal eigenfunction corresponding to branch 6
Fig. 2 at the pointb525.58, slightly before the bifurcation poin
]kQ50. ~b! The internal eigenfunction corresponding to the bifu
cation point atb522.17 where branches 5,8 in Fig. 2 meet. Do
mark the neutrally stable eigenmode;k53.
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those of the neutrally stable eigenmode. Thus, unlike
previously known case@lines 6,7, and Fig. 3~a!# this new
instability cannot be captured by asymptotic expans
around that neutral eigenmode. In both cases the unst
eigenvalues reach a maximum and then go steeply to
near the existence limit of solitary solutions,b522k.

The cascade of symmetry-preserving bifurcations p
sented in Fig. 2 is somewhat similar to that of the TE1 mode
instability in a planar wave guide~1D geometry!, with Kerr
nonlinearity @15#, where the joint action of the refractio
index discontinuities and field nodes leads to instability.
our situation the symmetry-preserving instability develops
the region where the nodeless second harmonic start
dominate the fundamental, which has one or more node

For symmetry-breaking perturbations (JÞ0), the stability
properties are not as rich as forJ50. ForJ51 our numerics
reveal the presence of a neutral mode and a pair of eig
modes in the discrete spectrum with purely real eigenvalu
one of which is responsible for instability. We did not fin
any exchange of stability for these modes. For everyJ from
two to five we find such a pair of discrete eigenmodes w
purely real eigenvalues and all modes forJ.5 belong to the
continuum. The unstable perturbations forJ53,4 are local-
ized around the ring of the bound state in a manner tha
similar to what happens in saturable media@8#.

To show how the character of instability of the one-ri
solution depends on the phase mismatch parameter, we
in Fig. 4 growth rates vsb for all unstable eigenmodes. Fo
phase mismatches from the cascading limit down tob;23,
symmetry-breaking instabilities withJ53,4 are dominant.

FIG. 4. Growth rates of the maximally unstable eigenmodes
b for one-ring solitary solutions. Dotted line in~b! displays Iml0 of
the J50 internal eigenmode marked by line 1 in Fig. 2;k53.

FIG. 5. ~a! Real part of the fundamental harmonic field at a la
stage of a simulation of the symmetry-breaking process.~b! Super-
imposed images of its transverse intensity distribution at differ
values ofz, showing radial trajectories of the daughter soliton
b521, k53. Brightness and size of central spot in~b! are exag-
gerated by the superposition of multiple images.
e

n
ble
ro

-

n
to

n-
s,

h

is

lot

However, sufficiently far from the NLS limit our scenario
with azimuthally homogeneous perturbations dominant,
realized. We stress again~see discussion above! that this
symmetry-preserving instability is not related to a violati
of the criterion]kQ.0. Note that in the limitb@1 the J
50 internal eigenmode exists and theJ51 eigenmode has a
nonzero growth rate@Fig. 4~b!#.

One expects the propagation dynamics of solitary state
be mainly determined by the perturbation eigenmode w
maximal growth rate. To examine this we performed an
tensive series of numerical simulations of Eqs.~1!, using
both polar and Cartesian grids. Predictions based on our
bility analysis are in good agreement with the results of o
simulations. An example of the noise-stimulated breakup
a one-ring solution into three filaments is shown in Fig. 5~a!.
We plot the real part of the fundamental field profile rath
than the intensity distributions to show that the daughter s
tons formed from the ring are out of phase with the cen
one. Radiation losses in the breakup are quite small, so
the initial energyQ is mostly divided among the daughte
solitons. Their diameters are comparable to the width of
initial ring. For b values, where growth rates forJ53 and
J54 are almost equal, the simulation results depended
the particular noise realization, but we mostly observed
ring forming four filaments, one of which was usually le
intense than the others.

Throughout the whole range of parameters in which
symmetry-breaking instability is dominant we observed
pulsion between the central spot and daughter filame

s

t
;

FIG. 6. ~a! Initial ~dashed lines! and post-coalescence~solid
lines! radial profiles of fundamental and second harmonics sim
lated where the symmetry-preserving instability is predicted
dominate.~b! Corresponding evolution ofuE1,2u at r 50 vs propa-
gation coordinatez; k53, b524.2

FIG. 7. ~a! Growth rates of the dominant unstable eigenmod
vs b for two-ring solitary solutions.~b! Real part of the fundamenta
field at a late stage of a simulation of the symmetry-breaking p
cess;b51, k53.
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which results from the fact they are out of phase@16# @see
Fig. 5~a!#. This repulsive force makes the outer filamen
move out along radii@Fig. 5~b!#, in contrast to the tangentia
motion of daughter solitons after the breakup of one-r
solitary waves that carry nonzero orbital angular moment
@10#, where intersoliton forces are negligible in comparis
to the need to conserve angular momentum.

Our stability analysis predicts a symmetry-preserving
stability scenario where theJ50 eigenmode dominates. Th
prediction is indeed confirmed by the simulations. For e
ample, atb524.2, instead of fragmentation we observed t
coalescence of the ring with the central spot to form a sin
filament. After transient dynamics this filament forms an o
cillating solitary wave~see Fig. 6!. These undamped pulsa
tions are related to the existence of an internal eigenmod
the ground-state solution@14#.

Considering two-ring solitary solutions, we present t
growth rates for the dominant eigenmodes and an examp
symmetry-breaking instability~see Fig. 7!. General features
of the dynamics are qualitatively similar to the one-ring si
ation.

The evolution of filaments following a symmetry
breaking instability of peak-and-ring solitary solutions
saturable Kerr media@8# is a question that has not previous
or
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.
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been examined. In simulations of this problem we obser
the same sort of dynamics as described above for quad
media, but with no coalescence phenomena.

In summary, we have undertaken a detailed analysis
stability of cylindrically symmetric higher-order solitar
waves due to parametric interaction in quadratic nonlin
media. For a wide range of positive mismatches, symme
breaking instability of the rings is predicted and confirm
by simulations that show that the instability leads to filame
tation into daughter solitons that are repelled radially fro
the central spot. For sufficiently negative phase mismatc
we predict that a new symmetry-preserving instability b
comes dominant. This is confirmed in simulations in whi
the rings are found to coalesce with the central filame
forming an oscillating, single-peaked, solitary wave. To o
knowledge this is the first explicit example of a symmetr
preserving instability of 2D self-trapped beams in bulk m
dia that is different from the Vakhitov-Kolokolov scenar
@5# and its generalizations.
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