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Instabilities of higher-order parametric solitons: Filamentation versus coalescence
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We investigate stability and dynamics of higher-order solitary waves in quadratic media, which have a
central peak and one or more surrounding rings. We show the existence of two qualitatively different behav-
iors. For positive phase mismatch the rings break up into filaments that move radially to the initial ring. For
sufficient negative mismatches rings are found to coalesce with the central peak, forming a single oscillating
filament.[S1063-651X98)50608-3

PACS numbes): 42.65.Tg, 03.40.Kf, 42.65.Ky

Stability of optical solitary wavesgsolitong is one of the The dynamics induced by the instability of higher-order
most important questions of theoretical nonlinear optics bestates is a fascinating phenomenon on its own and it is a
cause of its direct connection with the possibility of experi- natural starting point for understanding pattern forming phe-
mental observation of solitons. Stability of the solitons innomena in the evolution of higher-order Gaussian beams in
fully integrable systems naturally follows from integrability. nonlinear medig[13]. The primary reason for this Rapid
Solitons of the one-dimensionélD) nonlinear Schidinger Communication is to address the problem of stability and
equation(NLS), describing propagation of short pulses in adynamics of higher-order solutions with zero angular mo-
fiber with cubic nonlinearity, are a well known exampl. mentum in quadratic media. In particular we show that these

A wide range of the nonintegrable Hamiltonian models a|sosolutions reveal a scenario of evolution that is absent for
gorresponding solutions in Kerr-like media. Namely, for

have solitary solutions. For instance, equations describin o e
ome parameter values, symmetry-breaking instability lead-

parametric interaction in quadratic nonlinear media hav . . . R
solitary solutions, which were shown in Ré®] and were ing to filamentation along rings replaces it with symmetry-

recently explored in detail from both theoretical and experi_pr_eservmg instability, resulting in the coalescence of rings
. ) . : with a central peak.
mental sides because of their many interesting feat{sess,

34 | ; bl h bility of d We consider the interaction of first and second harmonic
€.g.,[3,4]). In nonintegrable systems the stability of ground- e fields propagating in a dielectric medium with qua-

state solitary solutions is often governed by the derivative ofj,4tic nonlinearity, under the conditions of type | phase

some integral invariant with respect to an associated fre?natching and with negligible walk-off effects. The corre-
parameter of the solutiod—6]. For example, it has been . - . _ e 9
rigorously proven that for ground-state bright solitary Solu_spondmg Hamiltonian [2] ‘is H=/fdx dy3|V.E|

tions, the generalized NLS equation positivity of the deriva- %|VLE2|2+B|E2|2_ 3(EfE3 +c.c)l  where V, =i,
tive of total energy with respect to the nonlinear wave num-+jd, and g is the normalized phase mismatch. All variables
ber shift is a necessary and sufficient condition for stabilityand parameters are dimensionless, and these scaled units are
[5]. Numerical and analytic studies indicate that this alsoused throughout the text and in the figures. The evolution of
holds for ground states in quadratic mef4a. the normalized field_envelopes of the fundamenr:‘f;\l!)(and
The existence of higher-order solitary waves with brightS€cond Ez) harmonics obeys the system of equations
and dark central spots surrounded by one or more rings was
demonstrated for two-dimensioné2D) NLS equation with i9.E :ﬁ
pure Kerr[7] and saturabl¢5,8—10 nonlinearities, and also M SER
in quadratic nonlinear medid0—12. No universal stability
criterion is known for higher-order bound states and theitWe look for nondiffracting solutions of Eq$l) in the form
stability has to be studied individually in every case. It hasE(z,x,y) =An(r)e'™?, wherer= N A, are real
been shown that saturable nonlinearity higher-order bounéunctions, andk is the nonlinear wave vector shift. The ex-
states with bright and dark central spots are stable with reistence condition of localized solutions with exponentially
spect to purely radial perturbations, obeying the criteria fordecaying tails isc>max0,—5/2). For any value of in this
ground states, but unstable with respect to azimuthally derange we were able to numerically build higher-order many-
pendent perturbations, showing a breakup of their rings intasing solitary solutions with a bright central spot. Examples of
filaments[8—10]. Properties of solutions with dark central spatial profiles of one- and two-ring solutions are presented
spots are strongly affected by their nonzero angular momerin Fig. 1(a). For any finite number of rings, the fundamental
tum, and these properties are very similar for both saturabléeld has radial zeros but the second harmonic field always
and quadratic nonlinearitig4.0]. remains positive, though they have minima that are close to
the zeros of the fundamental. In the linge1, Eqs.(1) can
be approximately reduced to an NLS equation for the funda-
*Electronic address: dmitry@phys.strath.ac.uk mental field. Accordingly for increasing the second har-

m=1,2. (1)
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FIG. 1. (a) Radial profiles of one- and two-ring solitary waves.
Full (dashedl lines are forA; (A,). (b) Total energy vs« for one-
ring (full lines) and two-ring (dashed lines solitary waves. The
negative values o are chosen so as to giveQ=0 at«x=3.

situation is opposite for negatiye when « values are close

To study stability we consider 2D perturbations of these
solutions in the general formE.(r,6,z)=e™<A(r)
+eh(r)er 904 ¢ * (r)er 27199 Heregis the polar angle
andJ is the azimuthal index of the perturbatiahmust be an
integer for azimuthal periodicity. Linearizing Eqgl) and
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FIG. 2. Real(full lines) and imaginary(dotted line$ parts of the
eigenvalues of=0 eigenmodes v8; «=3.

>0 of a pair of eigenmodes with purely imaginary eigenval-
ues(with opposite signslying in the gap iQ.,iQ;). At
the pointd, Q=0 these eigenmodes coincide with the neutral
monic field tends to carry less and less of the energy. Thg0de and for more negativé appear again but with purely
real eigenvalues of opposite sign, signifying instability. For
to the boundary of soliton existence. Dependences ¢é  the ground state this is the only instability scenario and these
the energy invarianQ= [ [dx dy(|E,|2+2|E,|2) are pre- discrete eigenmodes disappear into the continuum for large
sented in Fig. (b). p>0[14]. ,
In the present system, we have undertaken a numerical
investigation of the eigenvalue problef®). The casel=0
reveals two pairs of discrete eigenmodes. The interplay be-

tween them leads to a bifurcation scenario, which we study
for different values of3 for fixed k=3. Changingx at fixed

< B has no qualitative effect due to the scaling properties of
Eq. (1). However, introducing this scaling modifies the sta-
bility criterion 9,Q>0 [4], which we prefer to avoid.

Real and imaginary parts of key eigenvalues from the
discrete spectrum are plotted ysin Fig. 2. In the limit of
large B we found one internal eigenmodkne 1 in Fig. 2
but, at3=4.75, another internal eigenmod@e 2) emerges

putting e =rPlf3 (r) give the nonself-adjoint eigenvalue
problem

fJ+1 I:Jl A2 Al 0 fjrl

N fJ_l —A; _I:Jl 0 —As fJ_l @
I = ~ 1
’ f3 Aq 0O L, O f12

fi, 0 —A 0 _EJZ i,

class of functions obeyindf;,/dr=0 atr =0 and exponen-

plane outside the raysQ.,i©) and (—i{};,—i%), which

<0 because of the Hamiltonian nature of our problem. In-

from the continuum. Upon emergence, mode 2 has\dm

=k=3, but aspg is decreased the eigenvalues of the two
modes come together, as Fig. 2 shows. They fuse at
. . ~ R ~ B=—0.82 to form two pairs of eigenfunctions with complex
where L =3R;—«, Ljp=1R;—2x—pB, and R;=d%dr?  conjugate eigenvalues, giving the onset of an instability
+(2[J|+1)/r(d/dr). We seek unstable eigenmodes in the(lines 3,4. At B=—2.06 a reverse bifurcation takes place
(lines 5,6. One eigenmodé¢Fig. 3(a] then has a purely
tially decaying atr —co. Corresponding eigenvalues belong- imaginary eigenvaludline 6) until it loses its stability at

ing to the discrete spectrum can lie anywhere in the comple=-5.61(line 7), whered, Q=0. This is the standard insta-
bility scenario described above. The other eigenmode under-
belong to the stable unbounded continuum, hede  goes a similar bifurcation, but @=—2.17(lines 5,9, which
=min(x,2«x+ B). Unstable modes have eigenvalues withis well before the points, Q=0. At this bifurcation the
Re);>0. They must always have a counterpart with\Re eigenfunction profiledFig. 3(b)] are quite different from

finitesimal phase and translational transformations of the sta- 5

tionary solutions generate two eigenfunctio?@;]: TmA,
for J=0 and?fm=(1/r)(dAm/dr) for J=1, which are neu-
trally stable §q,=0).

We will mainly deal with solutions that have only one
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ring outside the central peak. These show the main features

of the dynamics of solutions with an arbitrary number of

0.00

rings. First we consider symmetry-preserving perturbations, g5

J=0. Using asymptotic techniques developed for the
ground-state solutiofd], it can be shown that the neutrally
stable mode branches at the painQ=0, giving instability
standard stability criterion for ground statgg5] is also a

states. This instability is related to the existence #0
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FIG. 3. (8 Internal eigenfunction corresponding to branch 6 in
for 9,Q<0 [see Fig. )]. Thus we can conclude that the Fig. 2 at the poinis=—5.58, slightly before the bifurcation point
d,Q=0. (b) The internal eigenfunction corresponding to the bifur-
necessarycondition for the stability of higher-order bound cation point at3=—2.17 where branches 5,8 in Fig. 2 meet. Dots
mark the neutrally stable eigenmodes:3.
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FIG. 4. Growth rates of the maximally unstable eigenmodes vs F'C- 6. (8 Initial (dashed lingsand post-coalescendsolid
3 for one-ring solitary solutions. Dotted line {b) displays Im of lines) radial profiles of fundamental and second harmonics simu-

the J=0 internal eigenmode marked by line 1 in Fig./2=3. lated where the symmetry-preserving instability is predicted to
' dominate.(b) Corresponding evolution dE; J atr=0 vs propa-

. . gation coordinate; k=3, f=—4.2
those of the neutrally stable eigenmode. Thus, unlike the

previously known casélines 6,7, and Fig. @] this new

instability cannot be captured by asymptotic expansiorﬁowever’ sufficiently far from the NLS limit our scenario,

around that neutral eigenmode. In both cases the unstabféth azimuthally homogeneous perturbations dominant, is

eigenvalues reach a maximum and then go steeply to zelr@al'ZEd' We stre;s a}ga(tsgg d|_scu53|on aboyehat .th's.
near the existence limit of solitary solutiong= — 2«. symmetry-preserving instability is not related to a violation

The cascade of symmetry-preserving bifurcations prep_'c the criteriond,Q>0. Note that in the limit3>1 the J
sented in Fig. 2 is somewhat similar to that of the, Fiode ~ — 0 Internal eigenmode exists and the 1 eigenmode has a

instability in a planar wave guid€lD geometry, with Kerr nonzero growth ratéFig. 4(b)]_‘ . .

nonlinearity [15], where the joint action of the refraction One expecis the propagation dynamics of solitary states to
index discontinuities and field nodes leads to instability. Inbe fT‘a'”'y determined by the _pertur_ba'uon eigenmode with
our situation the symmetry-preserving instability develops inmax!mal grpwth rate. To'examme th_|s we performed_an ex-
the region where the nodeless second harmonic starts {)gnswe series of numerical simulations of E¢#), using
dominate the fundamental, which has one or more nodes. oth polar and Cartesian grids. Predictions based on our sta-

. : e bility analysis are in good agreement with the results of our
For symmetry-breaking perturbatio 0), the stabilit . . ; )

propertigs are 2:),[ as richgaps b0 Foﬁi 1)our numericys simulations. An example of the noise-stimulated breakup of
reveal the presence of a neutral mode and a pair of eigerzfl- one-ring solution into three filaments is s_hown in .Fi@)s
modes in the discrete spectrum with purely real eigenvalueéNe plot Fhe regl pgrt .Of the fundamental field profile rathef
one of which is responsible for instability. We did not find than the intensity distributions to show that the daughter soli-
any exchange of stability for these modes. For evifyom tons formed from the ring are out of phase with the central
two to five we find such a pair of discrete eigenmodes with®ne- Rgdiation 'OSS‘?S in the br_eqkup are quite small, so that
purely real eigenvalues and all modes §o¢5 belong to the the initial energyQ is mostly divided among the daughter
continuum. The unstable perturbations for 3,4 are local- solitons. Their diameters are comparable to the width of the

ized around the ring of the bound state in a manner that i itial ring. For § values, Whefe groyvth rates fdr—3 and
similar to what happens in saturable mefa =4 are almost equal, the simulation results depended on

To show how the character of instability of the one-ring the particular noise realization, but we mostly observed the

solution depends on the phase mismatch parameter, we pIBFg forming four filaments, one of which was usually less

in Fig. 4 growth rates v for all unstable eigenmodes. For Mtense than the others.

phase mismatches from the cascading limit dowBto—3, Throtught;)ut tkhe vyhotlebfﬁng_e %f pa_lramteters IE Wh'cg the
symmetry-breaking instabilities witd=3,4 are dominant. symmetry-breaxing instabriity 1S dominant we observed re-
pulsion between the central spot and daughter filaments,
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FIG. 5. (a) Real part of the fundamental harmonic field at a late B 02468101214

stage of a simulation of the symmetry-breaking procéssSuper-

imposed images of its transverse intensity distribution at different FIG. 7. (a) Growth rates of the dominant unstable eigenmodes
values ofz, showing radial trajectories of the daughter solitons; vs g for two-ring solitary solutions(b) Real part of the fundamental
B=—1, k=3. Brightness and size of central spot(lp) are exag- field at a late stage of a simulation of the symmetry-breaking pro-
gerated by the superposition of multiple images. cess;3=1, k=3.
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which results from the fact they are out of phd4€] [see  been examined. In simulations of this problem we observed
Fig. 5@]. This repulsive force makes the outer filamentsthe same sort of dynamics as described above for quadratic
move out along radiiFig. 5b)], in contrast to the tangential media, but with no coalescence phenomena.
motion of daughter solitons after the breakup of one-ring In summary, we have undertaken a detailed analysis of
solitary waves that carry nonzero orbital angular momentungtability of cylindrically symmetric higher-order solitary
[10], where intersoliton forces are negligible in comparisonwaves due to parametric interaction in quadratic nonlinear
to the need to conserve angular momentum. ~ media. For a wide range of positive mismatches, symmetry-
Our stability analysis predicts a symmetry-preserving in-preaking instability of the rings is predicted and confirmed
stability scenario where the=0 eigenmode dominates. This py simulations that show that the instability leads to filamen-
prediction is indeed confirmed by the simulations. For ex+ation into daughter solitons that are repelled radially from
ample, ai3=—4.2, instead of fragmentation we observed theyhe central spot. For sufficiently negative phase mismatches
coalescence of the ring with the central spot to form a singlg,e predict that a new symmetry-preserving instability be-
filament. After transient dynamics this filament forms an 0s-comes dominant. This is confirmed in simulations in which
cillating solitary wave(see Fig. 6. These undamped pulsa- he rings are found to coalesce with the central filament,
tions are related to the_ existence of an internal eigenmode %rming an oscillating, single-peaked, solitary wave. To our
the ground-state solutiofi4]. , knowledge this is the first explicit example of a symmetry-
Considering two-ring solitary solutions, we present thepreserving instability of 2D self-trapped beams in bulk me-
growth rates for Fhe dom'nf’ﬂ_m e|gen'modes and an example @fi that is different from the Vakhitov-Kolokolov scenario
symmetry-breaking instabilitysee Fig. 7. General features [5] and its generalizations.
of the dynamics are qualitatively similar to the one-ring situ-
ation. We thank G. K. Harkness, Y. Kivshar, and A. Buryak for
The evolution of filaments following a symmetry- discussions on relevant questions and L. Torner for sharing
breaking instability of peak-and-ring solitary solutions in Ref. [12] with us prior to publication. This work was par-
saturable Kerr medig8] is a question that has not previously tially supported by EPSRC under Grant No. GR/L 27916.
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